Extensions 1→N→G→Q→1 with N=C23 and Q=S3×C7

Direct product G=N×Q with N=C23 and Q=S3×C7
dρLabelID
S3×C22×C14168S3xC2^2xC14336,226

Semidirect products G=N:Q with N=C23 and Q=S3×C7
extensionφ:Q→Aut NdρLabelID
C23⋊(S3×C7) = S3×F8φ: S3×C7/S3C7 ⊆ Aut C232414+C2^3:(S3xC7)336,211
C232(S3×C7) = C14×S4φ: S3×C7/C7S3 ⊆ Aut C23423C2^3:2(S3xC7)336,214
C233(S3×C7) = C14×C3⋊D4φ: S3×C7/C21C2 ⊆ Aut C23168C2^3:3(S3xC7)336,193

Non-split extensions G=N.Q with N=C23 and Q=S3×C7
extensionφ:Q→Aut NdρLabelID
C23.(S3×C7) = C7×A4⋊C4φ: S3×C7/C7S3 ⊆ Aut C23843C2^3.(S3xC7)336,117
C23.2(S3×C7) = C7×C6.D4φ: S3×C7/C21C2 ⊆ Aut C23168C2^3.2(S3xC7)336,89
C23.3(S3×C7) = Dic3×C2×C14central extension (φ=1)336C2^3.3(S3xC7)336,192

׿
×
𝔽